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INTRODUCTION.

Optical computing (that is the use of optical and electro-optical devices

to perform mathematical computations such as matrix multiplication, solution

of simultaneous linear equations, etc.) is a su bject of current interest. One

of the main reasons being the possible use of such device technology to large

array processing, hopefully in the parallel processing mode. The computing

speeds attainable using optical components are the major factor in this quest.

There are basically two aspects of the problem. The first is the physics

and technology of the devices that perform the manipulations via optical and/or

electro-optical means. A considerable effort has been expanded upon device

development; it is safe to say that this program has now begun to bear fuition

in that several devices have shown capabilit-ies that warrant optimism.

Th-s-bringqs us to-the second aspect of the problem, the subject of the

current reseatch effortr-aa. the development of a theory of optical com-

puting, E it is generally agreed that optical computing has an

advantage over digital computing in situations where parallelism can be

exploited. The canonical examples are matrix-vector multiplication and

matrix-matrix multiplication.. Generally, investigators in optical computing,

have taken algorithms directly from the standard numerical analysis literature

and modified it for use in optical computing. The most successful example is

matrix-matrix multiplication based on outer-product decomposition as

popularized by Athale and associates. If the matrices are both square and of

4 ~ size nx n, then outer-product decomposition achieves a saving in computational
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time be( .se the n2  inner products can be evaluated concurrently. However,

previous to the present investigation no one seems to have developed ab initio

numerical algorithms specifically fc'-uae in optical computing by taking

advantage of the fact that convolutionis can be performed very rapidly. We

have developed such an algorithm for matrix-matrix multiplications. It is

outlined in Section 1. Our second completed contribution is the development

of a tractable mathematical model of an optical system (assuming incoherent

light operations) and its use into an investigation of the inherent limits of

computation of. such a system in 'terms of a lower bound on the simultaneous

resources of volume and computing time.-t This material is outlined in Section

2. Note that the material in these two sections will be submitted for

/publicatibn in the near future. work is still continuing on the inf~.uence of

,- "~device uncertainty on parallel processing via optical computing.
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SECTION ONE

AN ALGORITHM FOR MATRIX-MATRIX

MULTIPLICATION VIA CONVOLUTION

-.-



One of the virtues of electro-optical computing is the ability to carry

out convolution operations very rapidly. Given this technical advantage, it

is worthwhile to develop an algorithm for the multiplication of two rectangular

matrices using convolution.

To this end let us consider the matrix product C AB where A is of

size n x n 2 , B is of size n2 x n3, and C is of size n1 xn Let the
-2 33

corresponding, matrix elements be a.i, bjk, and cik. Associate with A and

B the polynomials P(x) and Q(x), with x being interpreted as an inde-

terminate

(n1-1)n2n3+n2-1

P(x) = psx s  1)

s=O

Q Ix) = qx (2)

t=o

Note that the degree of P(x) involves not only the size of A through n1

and n2 but also the size of B through n3. The degree of Q(x), on the

other hand, involves only the size of B, namely n2 and n The p and

q coefficients are related to the matrix elements of A and B by

P = a. if s = (i-l)n 2 n3 + j- 1 (3a)

= 0 , if (i-l) n2n3 + n2 < s <in2 n3  (3b)

and
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qt b jk' if t kn2 - j (4a)

0 if t n 2n3 (4b)

with: li it 14j n 2 and 1 .k n 3

We claim that the elements.6f the matrix product C are given by

selected coefficients of the polynomial

R(x) = P(x)Q(x)

n1n2n3-l m

E rm ( 5)

m=0

where
m

rM Psq s (6)
S.S=-

is the discrete convolution of the p and q coefficients. These selected

r are given bym

r. ck , if m = (i-l)n2n3 + kn -l (7)

A formal proof (which is really a verification of the formulae) is now

given. We begin by rewriting Eq. (6) in the form

rm E psqm_s = a jbjk (8)s Ott , ,€ 6 i

5- where the summation in the second series is over:



C: s (i-l)n 2 n 3 +j- 1 (9a)

(i-l)n 2 n3 < s < (i-l)n2 n 3 + n2  (9b)

Y: t = m- s kn 2 -j (9c)

: t < n2n 3  (9d)

The a term is simply Eq. (3a), while the 8 term is the negation of Eq.

(3b). The y term follows from Eq. (4a), while the 6 term is the negation

of Eq. (4b3. Upon substitution of the OL term into the 8 inequality, we

immediately see that this can only be true

S1 j < n2  (10)

In like fashion, substitution of the y term into the 6 inequality leads

to the requirement that

m = (i-l)n 2n 3 + kn 2 -l (11)

which is Eq. (7). Thus the formulae are verified.

A construction which leads to the various formulae for p and qt in

terms of a.. and b respectively uses row vectors. Consider a row
13 jk

vector P whose elements we denote by ps (coefficients of the polynomial

P(x)) composed of the matrix elements a.. of A and strings of zeros

as depicted in Fig. IA. The range of s is

0 <s <nIn2 n3 - n2 n3 + n2 - 1 (12)
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consequently

P 0, - if s (n-l)n n 3 +n (13a)
s1 2 3 2

-0, if s in2 n3  (13b)

Furtherm~re the p5  are related to the a.. as given by Eq. (3a), as thes 1)
reader can verify by construction.

In like fashion, we construct another new row vector q with elements

qt according to Fig. lB. Unlike p, q has no strings of zero elements.

The range of t is

0 < t < n2n3 - 1 (14)

so that

qt if t 2 3 (15)

Within the range of t, the qt are related to the bjk by

qt = b jk if t = (k-l)n2 + n 2 -j (16)

which reduces to Eq. (4a).

As an illustrative example of the algorithm, consider the case where

is 2x 2, B is 2x 3 so that C is 2x 3 (i.e., nl= 2, n 2 = 2, n 3 = 3).

The upper limits on the polynomials P, Q and R are 7, 5, and 11,

respectively. The ps qt and r coefficients evaluated according to
t m

Eqs. (3), (4) and (7) are 1  i n Table 1. Upon carrying out the convolu-

tion operation, Eq. (6), in ,.'r ction with this table we have:

V ."



Table 1. Listing of the p, q and t coefficients for the

case where A is 2 x 2, B is 2 x 3 and C is 2 3.

PS qt rm

0 a11 b21.

a12 b C l

2 0 b

3 0 b C 2

i .0 12 c12

4 0 b23

5 0 b3 c1
.13 1

6 a2 1

7 a 2

a22 ]c21

8 0

9 0
a

"1 c22

10 0

l 0 C 2 3

12 0

-Si

'S



r =c 11 = p0qI+p
lq0 = a11b11 + a1 2b 2 1  (17a)

r3 =c 1 2 = p 0 q 3 + pIq 2  a 1 1 b1 2 + a12 b22 (17b)

r 5 = c1 3 = poq 5 +plq4 = allb1 3 + a1 2 b 2 3  (17c)

r 7 = c21 = p 6 q 1 +p 7 q0 = a2 1b1 1 + a 2 2 b 2 1  (17d)

r9 = c2 2  p6q3 + a 2 1 b 1 2 +a 2 2 b2 2  (17e)

rl=c 2 3  p 6 + p 7 q4 = a 2 1 b 1 3
+ a2 2 b2 3  (17f)

These are, of course, the matrix elements as obtained by more standard

procedures.

The implementation of the algorithm can be carried out in a straight-

forward fashion by re-examination of Figs. IA and lB. Note that.the row

vector g in Fig. IA consists of the rows of A in which zeros are inter-

spaced,.*the number of zeros is fixed. Thus we can easily handle the vector

Scontaining the matrix elements a. The row vector j, containing the

matrix elements bjk, is simply the coZuins of B in reverse order, see

Fig. lB. This vector is also easily handled in the implementation.

V
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SECTION TWO

LOWER BOUNDS ON THE COMPUTATIONAL

EFFICIENCY OF OPTICAL COMPUTING SYSTEMS



The advent of Very Large Scale Integrated (VLSI) circuitry has lead to

considerable decrease in the physical size of computers with a corresponding

increase in speed of execution of operations*. Basically there are three

interrelated aspects to VLSI: design and fabrication of the chips, design of

systems which use these chips for specific applications, and development of

algorithms which utilize the inherent capabilities of such chips. The re-

volution in computer science, for both numerical and nonnumerical applications,

brought about by VLSI continues unabated.

The computational limitations of VLSI were first investigated by

Thompson [13. For an introduction to this work see the basic text of

Ullman (2] which contains references to subsequent work. It has been shown

2
that any VLSI circuit with area A and time T requires at least AT .(n)

to solve various computational problems such as FFT, convolution, and ix Z

2
matrix multiplication where n= £ . The symbol Q is defined in Ullman:

f(n) = 1(g(n)) means that there exists a positive constant c such that for

an infinite number of values of n we have f(n) cg(n).

Nevertheless, VLSI suffers from the limitation that the technology upon

which it relies is inherently two-dimensional. Snyder's recent review [3]

contains a very useful discussion of the constraints imposed by VLSI as regards

planarity. In particular conventional VLSI chips are constructed by super-

posing a small number of layers on top of a substrate. This substrate has a

thickness which is order of madnitude greater than the size of the transistors

and wire width. Input and outlut from a conventional VLSI chip must be made



by a limited number of pads located on the sides of the chip. VLSI chip tech-

nology is changing almost daily; however, some of the more basic aspects are

discussed in Barbe [4] and Einspruch (5]. Although an ensemble of two-

dimensional chips can be placed on top of each other with holes drilled down

through them for interchip communication, the total number of layers is

seriously limited by the substrate thickness of each chip: consequently the

resulting device cannot properly by termed "three-dimensional VLSI". For this

reason, it appears that truly. three-dimensional VLSI will most likely not be

possible to fabricate. Nevertheless some interesting theoretical investiga-

tions of three-dimensional VLSI have been carried out: Rosenber (6],

Leighton and Rosenberg (7].

The purpose of the present communication is to summarize investigations

into various aspects of the computational performance of three-dimensional

devices which make hybrid use of electronic and optical components to perform

operations. Our goal is to facilitate general statements on such electro-

optical computations with specific reference to lower bounds on their com-

plexity. Since such devices may contain a large number of components, we

term them VLSIO, with the 0 denoting optics.

We note that a very useful overview of optical computing (more properly

electro-optical computing) may be found in Caulfield et at. [8].

In order to carry out such an analysis we outline the development of an

abstract model of VLSIO which is essentially technology independent but

incorporates the physical restrictions of light beam propagation as expounded

by Gabor (9], especially with respect to the very important fact that the



amount of information passing through a cube of small volume is bounded. This4
physical constraint allows us to adapt previous VLSI lower bound arguments to

the VLSIO situation and allows for comparisons of electro-optical computing

devices in terms of their volume V and the time T taken by VISIO on a

given input (- number of time units that elapse from the first input signal

until the last output signal). We avoid making assumptions about the precise

physics of the devices utilized. This would only limit the later application

of these ideas as the physical models are improved and modified. Cptical

physics (through Gabor's theorem) implies an upper limit on the rate of in-

formation transfer across an optical beam, and hence a lower bound on com-

putational efficiency of VLSIO. In addition we assume that any 2-D convolu-

tion of an n x n array of points can be achieved by a VLSIO device in unit

time step. This assumption is reasonable because there already exist optical

devices which perform thusly.

Note that all the variables and functions are taken to be Boolean (i.e.,

the values of the variables are taken from {0,i0).

We begin by discussing the well known abstract two-dimensional model of

a VSI chip as a L1 x L 2 L3 grid graph with height L (<< L or L2 ) held

constant. The distance between grid points is w, the feature width. The

chip processors are located at various distance nodes of the grid graph with

-S. each processor storing a state consisting of b bits. Furthermore the

processors execute synchronously on a step consisting of a time unit of

duration T seconds. The remaining nodes are used for wire routing, or for

input and output pods. Each wire can run along a path in the grid graph from

% . . .



an input pod,. or a processor, to various output pods, or processors. Wires

are not allowed to intersect. On each time step, a value consisting of b

bits of information is transmitted across the wire grid from either an input

pod or a processor. The state of each processor is then updated on each step

by a fixed function of the values transmitted by the wires leading into the

processor, and by the state of the processor, in the previous step. The unit

step transmission time across wires is justified by the fact that wire trans-

mission can be made generally faster than transistor switching times. This

remarkably'simple model is sufficient to determine the computational efficiency

of VLSI devices.

Following the two-dimensional version, the fundamental building block of

our VLSIO device is the optical box B. It is a parallelopiped having lengths

Li, L2  and L3 with input and output faces, Fin and F out . These faces

are assumed to take as input and as output two-dimensional integer arrays

I(x,y) and O(x,y) respectively. For convenience, we consider the input

sources and output detectors to be very small compared to the size of the

optical box (in order to minimize optical diffraction effects), furthermore

they are uniformly spaced a distance w apart. The input sources are taken

to be LED's (laser emitting diodes) and the detectors are unspecified except

to state that they are sensitive only to the intensity of the LED radiation.

we remaind the reader that most electro-optical computations are now performed

via incoherent, geometrical optics based processors and not by coherent,

Fourier transform based processors. The ancillary optical equipment (lenses,

prisms, gratings, etc.) which spread and then collect the light can be

Ann ~ ~ . - -. r- 4



neglected in this version of the abstract model.

The output array is computed on each time step with a duration T as a

fixed function A B of the input array; A B will, of course, depend upon the

detailed optical characteristics of B.

The optical box, in addition to being three-dimensional, also differs

from VLSI in another way; namely, optical beams rather than wires provide

storage and cross-flow. Since the modus operandi is incoherent radiation,

these beams can intersect without interacting. The basic question that now

arises is: "to what extent do optical (laser) beams behave as wires?"

A wire can only transport information at a finite rate depending upon

wire cross-section, skin effects, etc. We would also expect an optical beam

to perform similarly not withstanding the greater information rate, This

problem has already been addressed by Gabor [9] who studied the "metrical

information" in a light beam. The conclusion that he draws is that a light

beam always has a finite upper limit with respect to information rates; the

upper limit depending upon wavelength of light, smallest effective beam area,

solid angle of divergence, etc. We need not concern ourselves with explicit

formulae; for our purposes it suffices that we can interpret an optical beam

as a wire.

Given this equivalence, we turn to the important problem of determining

lower bounds (in terms of simultaneous volume and time) on the computational

resources required for VLSIO to solve various problems.

In order not to unduly lengthen the text, it is assumed that the reader

is familiar with Sections 1.4, 2.1 and 2.2 of Ullman's basic text [2].



Consider a Boolean function f with a set X of n input variables

and a set Y of m output variables. Let X' be a subset of X; also let

P-(x L, XR' YL Y R) where X L , XR and YL YR are partitions of X and Y

respectively. We term P balanced if between one-third and two-thirds of X1

lies in XL and note it by Pb" If a and 8 are two input assignments,

then we term them a fooling pair of assignments to X if:

1) output YL is distinct for input assignments a(X) and a(XL )8(X R

2) output YR is distinct for input assignments 8(X) and ((X L)8(X R).

In addition, let the fooling set for P be a set of assignments A of X

such that for all distinct a, aEA, at least one of ($,8), (8,a) is a

fooling pair.

Finally, we require that the locations and times of the input and output

are given only once.

Crucial to t-he analysis is the concept of information content (essentially

"the amount of information that must cross a boundary in order to solve the

problem"). Formally the information content of the Boolean function f is;

max min max log2 (IAI)
If = (1)

X' Pb A

where A denotes the fooling set corres-onding to P The following

functions (of importance in electro-optical computing) are known to have

information content If= Q(n):

a) n point discrete Fourier transforms.

2
b) multiplication and inversion of two i~x Z. matrices where n= Z



c) n point convolution.

The following important result on lower bounds is due to Thompson [1,2]:

Any two-dimensional VLSI chip computing a Boolean function f requires

simultaneous area A and time T satisfying AT2 = 1(1 2).
f

We now prove: Any three-dimensional "optical box" computing a Boolean

function f requires simultaneous volume V and time T satisfying
,.2(3/2,.

VT 3/ 2  3/2z ;

f

The proof (which we now sketch) is an adaptation of the two-dimensional

technique. Let the device be a parallelepiped having dimensions L1< L2  L 3

with volume V= L Choose X' to be the subset of X such that

if= I f(X'). For each i = 1,2,3 we can find a cut C. of area

A. 2V/L. i 1 ; (2)2. 1

which disconnects the device into two components each of which contains at

most two-thirds, but no less than one-third, of the inputs of X'. By

definition at least If bits must be transported across each cut; this

requires time

T A (3)
A.

Consequently

V2 T 3  A A AT 3 ;1/2 (4)

or

3/2
V'r = f 2(If ) (5)



which is the sought-for result. The main point to emphasize is that this

result depends upon the fact that we can treat light beams as if they were

wires.

An immediate consequence of this theorem is that the lower bounds for

optical computing are:

a) n point convolution or n point discrete Fourier transforms

VT3/2 = (n 3/ 2 ) (6)

2
b) multiplication and inversion of two £x Z matrices where n-£2

VT 3/ 2 = £(13) (7)

These results follow from the statements quoted after Eq. (1). Equations (6)

and (7) represent the lower bound petformance of these two operations in

terms of volume and time. It is important to remember that these bounds are

a consequence of the fact that we allow the entire volume of B to be

operative.

N
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